11-12
Resource Virtualization for Software-defined Networks

Software defined networking centralizes control plane functionality, separating it from the data plane which is responsible for packet forwarding. Many management tasks such as finding heavy hitters for multi-path routing may run using SDN in a network with limited resources. However, by abstracting them from resources at individual switches, a resource manager at the controller can optimize their resource usage. As management tasks often have a measurement-control loop, my projects, DREAM and vCRIB, work on measurement and control tasks, respectively: First, Dream ensures a minimum user-specified level of accuracy for tasks instead of allocating a fixed amount of resources to each task. Therefore, it dynamically allocates resources across tasks in reaction to traffic dynamics and task dynamics, which allows resource multiplexing. DREAM is 2x better at the tail of minimum accuracy satisfaction comparing to current practice even in cases with moderate load. Next, vCRIB automatically distributes control rules on all switches in the network giving the abstraction of a centralized rule repository with resources equal to the combined resources of all switches. vCRIB can find feasible rule placement with less than 10% traffic overhead in cases where traffic-optimal rule placement is not feasible with respect to CPU and memory constraints.

Masoud Moshref is a 5th year PhD candidate in University of Southern California. He works on resource virtualization in Software-Defined Networks in Networked Systems Lab under supervision of Ramesh Govindan and Minlan Yu. He got MSc and BSc in Information Technology Engineering from Sharif University of Technology in Iran.

Date and Time
Wednesday November 12, 2014 12:00pm - 1:30pm
Location
Computer Science 402
Event Type

Contributions to and/or sponsorship of any event does not constitute departmental or institutional endorsement of the specific program, speakers or views presented.

CS Talks Mailing List