Computer Graphics research has long been dominated by the interests of large film, television and social media companies, forcing other, more safety-critical applications (e.g., medicine, engineering, security) to repurpose Graphics algorithms originally designed for entertainment. In this talk, I will advocate for a perspective shift in our field that allows us to design algorithms directly for these safety-critical application realms. I will show that this begins by reinterpreting traditional Graphics tasks (e.g., 3D modeling and reconstruction) from a statistical lens and quantifying the uncertainty in our algorithmic outputs, as exemplified by the research I have conducted for the past five years. I will end by mentioning several ongoing and future research directions that carry this statistical lens to entirely new problems in Graphics and Vision and into specific applications.
Bio: Silvia is a fifth year Computer Science PhD student at the University of Toronto, working in Computer Graphics and Geometry Processing. She is a Vanier Doctoral Scholar, an Adobe Research Fellow and the winner of the 2021 University of Toronto Arts & Science Dean’s Doctoral Excellence Scholarship. She has interned twice at Adobe Research and twice at the Fields Institute of Mathematics. She is also a founder and organizer of the Toronto Geometry Colloquium and a member of WiGRAPH.
To request accommodations for a disability please contact Emily Lawrence, emilyl@cs.princeton.edu, at least one week prior to the event.